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In describing many physical phenomena a need arises to consider the problems of heat conduction in 
materials undergoing phase transitions with heat release or absorption. An essential feature of these problems 
is the presence of a moving interface (front) between different phases. The work of Stefan devoted to the 
study of the thickness of polar ices is most likely the first dealing with analogous problems. A more general 
approach was formulated by Neumann (see [1]). 

Description of propagation of a melting front is a sufficiently complicated linear problem whose 
exact solutions exist only for several particular cases of propagation of the melting (solidification) front 
in homogeneous bodies [2, 3]. The presence of inhomogeneities in the medium complicates considerably the 
solution of the heat conduction problems. Even in the absence of phase transitions in the nonhomogeneous 
medium there are only approximating techniques [4, 5], and the problem of propagation of a plane melting 
front in a layered medium is difficult even for numerical methods [6]. The motion of the interface, the law of 
motion being defined from the solution of the problem, prevents the direct use of the well-elaborated numerical 
methods (the finite-element method, the boundary-element method), which are efficient for media with fixed 
boundaries. 

In the present work we propose to use the method of asymptotic averaging [7-!0 ] used for 
nonhomogeneous media with periodical structure for solving the problem of heat conduction with allowance 
for the phase transitions. The object of the work is to obtain a relatively simple analytical expression 
that estimates of the dynamics of melting (solidification) processes in materials whose structure is close 
to periodical. 

1. Let us consider a semi-infinite medium, which is a series of periodically alternating layers of different 
thickness (Fig. 1). The layers are arranged in parallel to a free surface, and the size of the periodicity cell 
equals H, i.e., for all parameters of the media the condition R(x)  = R(x  + m H ) ,  m = 1, 2, 3 . . .  holds. For 
the given geometry we solve the problem of heat propagation inside the media, if at the moment t = 0 the 
temperature at the free surface becomes equal to T1 and is maintained constant at t > 0. It is assumed that 
the temperature T1 is higher than the initial medium temperature To. The temperature distribution in the 
medium will be governed by the nonstationary heat conduction equation 

OT(x,,) 0 k(x) (1.1) 
0t - 

with the initial condition 

T(x,O) =To  at x > 0. (1.2) 

Here T(x ,  t) is the temperature distribution; p, c, and k are the density, heat capacity, and heat conductivity 
of the medium. 
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Fig. 1 

In the case where T1 < min {T~ , . . . ,  Try} (T* is the melting point of the ith layer, i = 1 , . . . ,  m ,  m is 
the number of layers in the periodicity cell), Eq. (1.1) is supplemented by the boundary conditions 

T(0, t )  = T, at t 1> 0; (1.3) 

IT(x, ~)] a = 0; (1.4) 

k(x) ~xx J = 0, (1.5) 

where square brackets denote a jump at the interface boundary G, i.e., [T(x, t)] Iv = T(x, t) la+o-T(x, t)la-o. 
Within the framework of the asymptotic averaging technique [7] the solution of the problem (1.1)-(1.5) 

for a periodical medium is sought in the form 

T(x,~,t) = T(~ + eT(')(x,~,t) +. . .  + enT(n)(x,[,t). (1.6) 

Here e is a small parameter  equal to the ratio of the size of a periodicity cell H to the characteristic size of 
the problem (e << 1); ~ = x/e is a "fast" variable which varies from 0 to H within each cell. 

Let us substi tute the expansion (1.6) into initial equation (1.1), having first made the passage to the 
variables (x, ~, t). Then taking account of the differentiation rule of a composite function and equating the 
coefficients at equal powers of r we obtain 

a (k(~) 0T<~ 
0~ o~ ] = 0; (1.7) 

0; (1.S) 

0 k(~) + k(~) + + k(~) - p(~)c(~) & o-~ 0~ J ~ ~ ,k (~ ) - -$ / - )  ~ = 0; (1.9) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  o . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 k(~) +-~(k(r -~x ) Ox ,--w:--. +~x(k(e)-~x ) - P ( r  = 0 ,  (1.10) 
0~ 

where p(~), c(~), and k(~) are periodic functions with a period H. 
Substituting the expansion (1.6) into the initial and boundary conditions after equating coefficients of 

equal powers e yields 

T(~)(z,~, 0) = / To, n = 0 at x > 0, 
( 0, n > ~ l  

T1, n = 0  
T(n)(0,~,t) = at t > 0, 

0, n / > l  
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G = 0 ,  n = 0 , 1 , 2 . . . ,  

G = n =  O, 1 , 2  . . . .  

Assuming formally x and ~ to be independent variables, we shall consider relation (1.7)-(1.10) as 
a recurrent chain of equations (differential with respect to ~) for the unknown functions T(O(x,~,t) (i = 
0, 1 , 2 , . . . ,  n) and appropriate initial and boundary conditions. In this case x is assumed to be a parameter in 
Eqs. (1.7)-(1.10). 

The functions T(i)(x.~.t) (i = O, 1,2,...,n) are periodic in ~. Following [7], integrating Eq. (1.7) 
with respect to the "fast" variable with subsequent averaging over the period shows that  T(~ ~, t) is not 
dependent on ~. 

Using the independence condition T (~ on the "fast" variable ~ in integrating Eqs. (1.8) and (1.9), one 
can show that  the first term in the expansion (1.6) is written as 

T(~ t) = T1 -(T1 - To)erf(x/2(xt)l/2). 
Here eft(y) is the error integral: K = (1/k(~))- l ;  X = K/(pc) is the effective coefficient of thermal 
conductivity; angle brackets denote averaging over the periodicity cell. The second term of the expansion 
can be written as 

T(1)(r'~'t) = - (T1-  T~ exp(-x2/4xt)(Trxt)l/2 ](o ~ ~'~ - 1) dr h 

and, therefore, after returning to the variables (x, t), the solution of the initial problem in a first approximation 
will take the form 

{ x exp(-x2/4xt) /  I'~ } 
T(x, t )~ TI-(T1-To)  e r f ( ~ - - ~ ) q -  (Trxt)l/2 o ( ~ - 1 ) d r /  . (1.11) 

As shown in [7], allowing for the zero and the first corrections yields a result close to an exact solution. 
However, using Eqs. (1.7)-(1.10) one can obtain a recurrent expression for determining the corrections of 
higher order and a solution of the problem with an arbitrary preassigned accuracy. 

2. Now we turn our attention to the case where the temperature T1 exceeds the melting point of an}" 
layer, for instance, the first one (T1 > T{). Let us consider melting as an instantaneous process. Within 
this approach different phases are separated by a fiat moving surface (melting front). In this case additional 
boundary conditions other than initial (1.2) and boundary (1.3) conditions should be assigned for the initial 
problem (1.1) at the melting front. The first of the additional conditions follows from the constancy of 
temperature at the phase transition boundary 

T ( x ,  

and the second is the heat balance equation 

[k(x) OT(x, Ox t)] 
where )~ is the specific heat of melting and xf(t) 
which is determined in solving the problem. 

t )  = T ; ,  ( 2 . 1 )  

z=x/(t) dxf (2.2) 
= dt ' 

is the coordinate of the melting front, the law of variation of 

It follows formally fl'om Eq. (2.1) that  the melting front propagates in the media without phase 
transition. In this case,-for such media in Eq. (2.2) one should take A = 0, and the equation goes to 
the appropriate condition (1.5). Following the asymptotic averaging technique, the solution of the problem 
stated will be sought again as expansion (1.6). Substitution of the expansion in (1.1) gives for the functions 
T(~)(x,~,t) (n = 0 ,1 ,2 , . . . )  the already known system of equations (1.7)-(1.10). Boundary and initial 
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conditions in a zero approximation have the form 

T(~ at x >  0, 

T(~ ~, t)l==~+( 0 = T~*, 
~=Q(O 

and in a first app'roximation respectively 

TO)(x,~,O) = 0 

T(~ ~, t) = T~ at t/> 0. 

[k(~,) ~=~j(,) = 0, 
0T (0) ] 

0~ J ~=~s(t) 

a t x > 0 ,  T(a)(O,~,t)=O a t t / > 0 ;  

T(:)(z, ~, t) ==~I(t) = 0; 
~=Q(0 

OT(')) ] ===S(t) 
[k(~)(~ + o,' JJ ~=~f(') 

(2.3) 

(2.4) 

dxs (2.5) 

It should be noted that the transition to the coordinates x and ~ results in the necessity of formal 
introduction of the law of change of the melting front position in a cell ~/(t) in time. 

For convenience we introduce the following notation: p_(~), c_(~), and k_(~) are the characteristics of 
the medium behind the melting front, whereas p+(~), c+(~), and k+ (~) are analogous characteristics ahead of 
the melting front. From Eq. (1.7) it follows that the zero-order correction can be written in a general form as 

'A(x,t) f dUk_(~) + vo(x,t),  0 • x <~ xf(t) ,  
T(~ (2.6) 

a(~,t) j d~/k+(~) + ~o(=,t), x > xf(t). 

It can be shown that the zero-order correction (2.6) will satisfy conditions (2.3) for any position of the 
front x / t>  0 only when A(x,  t) =_ O, i.e., as in the absence of phase transitions, in the zero approximation the 
solution of the problem is also independent of the "fast" variable ~, and 

T(~ ~, t) = ~o(=, t). (2.7) 

In this case the first-order correction is 

Ovo(=, t) 
TO)(x,~, t) = N~(~) - - - - ~ x  - -  

Or0(=, t) 
N1+(r ~xx 

where 

((1/k_)-1 ) 
Ni-(r = j" 1 d,7, 

0 

+ c l (z , t ) ,  o <. x << xAt) ,  

- -  + c z ( x , t ) ,  x > x z ( t ) .  

(2.8) 
H 

In Eq. (2.8) when defining the functions N~-(~) and NI+(~) we used expression (1.8) and the condition that 
the medium ahead of the melting front retains periodicity, and in the process of phase transition a periodic 
medium forms behind the melting front with a periodicity cell characterized already by other properties. 

Taking account of Eq. (2.8) and boundary condition (2.5), we obtain an equation for defining the law 
of motion of the melting front: 

<l/k+)_ 10vo _ <l/k_)_ 10vo dx I (2.9) 
O---xlx=x:+ o -~x x==t-0 = (Ap) dt " 

Since the function vo(x, t), being a zero-order correction to the solution, describes an averaged medium, in this 
equation melting is considered as a continuous process which occurs in a medium with averaged properties. 
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Substituting (2.7) and (2.8) in Eq. (1.9) after integration with respect to ~ yields: 

with 0 <~ x <. xf(t)  

/ (  ) 6~2t)0(X' t) 0Cl(x,,) 
k_(~) aT(~ - p_c_ ovo(x,t)at (1/k_)-:  O2v~ 2 d( - k_Ni-(~ ) 8x 2 k_ Ox + D(x, t), 

(2.1o) 
and with x > xf(t)  

0T(2) ) k+(~) of - / (p+c+ Ovo(x,t) O2vo(x,t) ~ _ k+N+(~) O%(x,t) OCo-(x,t) 
Ot ( l /k+) -1 Ox 2 Ox 2 k+ Ox + D(x, t). 

One can consider the medium in the cells ahead of the melting front to be periodic, which means 
application of the averaging procedure as was done in deriving Eq. (1.11). A periodical medium is formed 
behind the melting front. To obtain again the solution (1.11) in the limit in passing to a periodical medium 
without front, the equality 

( 0 ~  2)_ N+,_(( ) 02vo 0C1,2"~ _ D(x , t ) )  =O (2.11) 
( \k+;_ + ~ + -~-x) 

should hold, and then averaging of the expressions (2.10) yields 

Ovo(x,t) (1 /k_) - :  ~176 
(p_c_) Ot Oxo- - 0 at 0 <. x <. xi(t) ,  

O~o(x, t) 02.o(x, t) 
<p+c+) Ot ( l / k + ) - :  Oxo- - 0 at x > x/(t) .  

Equality (2.11) is an additional condition for determining the second-order correction T (2) ahead and 
behind the melting front. Denoting 

<I/k_p: (i/k+>-: 
x:=  (?_c_>, x2= (?+c+)' 

for determining vo(x, t) we have the problem 

Oo-~0(x,t) 0~0(x,t) - - -  at O <~ x <. zs ( t  ), X: Ox 2 Ot 
02,o(z , t )  O,o(~,t) (2.12) 

k2 Ox 2 - Ot at x > xl(t  ) 

with boundary condition (2.9) and the conditions 

vo(x,O) = To, x > O, vo(O~t) = T1, t ) O, vo(x,t)l~=zi(t ) = 0, (2.13) 

obtained by substituting (2.7) into the first three expressions of (2.3). 
One can easily see that problem (2.12) with conditions (2.9) and (2.13) is an analog of the known 

Stefan problem (see [1]). Therefore, its solutions should have the form 

erf(x/2(Xlt)l/2) 
T1 + (T t - T1) 0 < x < xf( t) ,  

~ o ( ~ , t )  = ~ '  
erf(x/2(x2t) 1/2) -- 1 (2.14) 

To + (T t - To) ~ -  ~ , x > x i ( t  ) 

(a is a constant connected with the front position xf ( t  ) by the relation xi ( t  ) = a(t)U2). 
Boundary condition (2.9) with account of (2.14) gives the following equation for determining the 

constant o~: 

exp(-a2/4X1) (lr)l/2 a(Ap), (2.15) 
exp(-a2/4X2) (XI)I/2<p-c-)(T;-TI) erf(a/2(xl)l/2) 2 (X2)  1/2 ( f l + C + ) ( T  t - To) erf(a/2( ,~.'2 ) 1/2 ) - -  1 = 
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which can be solved numerically. 
To obtain the first-order correction T(1)(x, ~, t), we substitute (2.14) into Eq. (2.8) and using condition 

(2.4) for the case of gpproaching the front from the left we obtain 

T(1)l~==,_o_~/(<l/k-> -' ,~.  exp(--x}/axlt) Z: - T' 
- 0 J \  k _ ( , )  ~ a ,  ~ +C~(x1-O,t)=O ~=~f-0 ) erf(./2,/~) ? ~  

and similarly when approaching from the right 

=~(.(l/k+> -1 exp(-x}/4X2t)  T~ - To 
x=~f+or ~Jf\ k+(r/) 1)dr/erf(a/2x/~2)-I  ~ ~'C2(xI+O't)=O" T(1) 

From the last two equations one can easily express 6'] and 6'2 at the point where the front is. But since xf(t', 
can take up all possible x, the expressions obtained for C~(xi, t) and C2(xl, t) should be valid for all x: 

~ i (  (1/k-}-1~ exp(-x2/4x , t )  T~ - T1 
Cl(x , t )  = 1 k_(y) ] dr/erf(c~/2(X1)]/2) (X17r~)l/2 , 

[ H( (1 / k+ )_1 ) exp(--x2/4X2 t ) T ~ - T o  
C2(x,t) = j 1 dr l 

Q k+(71) erf(a/2(x2)l/2) - 1 (X2rt)l/2" 

Thus, the first-order correction T(1)(x, ~, t) is determined completely and one can write the solution o 
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problem (1.1) with conditions (1.2), (1.3) and (2.1), (2.2), which in the first approx!mation is of the form 

) T, -t- erf(c~/---~(---~l/2) 2(.~.lt)l/2 

xf(t) {1/k-) -1 } 
exp(-xa/4\lt) f (1 )dr] , O <~ x <. xf(t), 

-t- (Xl~.t)l/2 k_ (r/) 
x 

T(x, t)= T~-To / e r f (  x ) (2.16) 
To + erf(~/2(x2)l/~)_ 1~ "~2()/2t)1/2 - 1 

exp(-x2/4"(2t) f (1 (1/k+)-l)dq , x > xy(t). + 
xi(t) 

Expression (2.16) in the first approximation describes the distribution of temperature in a layered medium 
with allowance for the phase transition processes. 

Figure 2 shows the results of calculating the temperature distribution in the first periodicity cells 
12 hours after the moment  when the heating of the medium with initial temperature To = - 5 ~  began. In 
this case the temperature T1 = -2~  was kept at the free surface. The calculation was carried out up to the 
second-order correction in expansion (1.6), which made it possible to take account of the effect of the medium 
inhomogeneity. It should be noted that within each layer the temperature variation follows a law close to a 
linear one. This is in good agreement with the numerical results. 

With the proviso that T1 > 0, melting processes start in the medium. In the context of the given 
model the motion of the melting front is determined by the parameter a. Figure 3 shows the dependence of 
the parameter on the temperature at the free surface. In calculations the water resulting from the ice melting 
was characterized by the parameters p3 = 1200 kg /m 3, c3 = 4,200 J / (kg-  deg), k3 = 0.567 W / ( m .  deg). 
Figures 4 and 5 present the results of calculations of the temperature distribution at T1 = 5~ and To = - 5 0 (  ' 
with the ice-water phase transitions in the medium. Figure 4 presents the value of zero correction T (~ for 
the time moment  t = 12 hours when the melting front is at a distance x I = 8.54 cm from the free surface. 
The dependence T (~ on x is of smooth character, and even the position of the phase transition front is not 
a breakdown point. However, account of the first correction (Fig. 5, curve 1) results in the appearance of the 
breakdown points at the layer boundaries and in the melting front. Curve 2 shows the calculation results for 
the time t = 18 hours when the melting front interpreted using this approach as a surface with temperature 
TI* = 0 is in the clay. A comparison shows good agreement between the calculation results for the dynamics 
of temperature variation in a periodic medium obtained with the use of the asymptotic averaging technique 
and numerical methods. 

Thus, the approach developed within the framework of the asymptotic averaging technique makes 
it possible to describe the heat propagation process in periodic media, including allowance for the phase 
transitions, by means of analytical relations. A substantial advantage of the method is that  it enables one to 
take account of a great number of layers within one periodicity cell with arbitrary dimensions and physical 
characteristics. 
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